A biomechanical analysis of applied pinch force during periodontal scaling

J Biomech. 2007;40(9):1910-5. doi: 10.1016/j.jbiomech.2006.09.001. Epub 2006 Oct 18.

Abstract

One of the factors associated with the high prevalence of upper extremity musculoskeletal disorders, such as carpal tunnel syndrome, among dental practitioners is the repeated high pinch force applied during periodontal scaling. The goal of this study was to determine the relationship between the pinch force applied during periodontal scaling and the forces generated at the tip of the tool. A linear biomechanical model that incorporated tool reaction forces and a calculated safety margin was created to predict the pinch force applied by experienced and inexperienced dentists during periodontal scaling. Six dentists and six dental students used an instrumented scaling tool while performing periodontal scaling on patients. Thumb pinch force was measured by a pressure sensor, while the forces developed at the instrument tip were measured by a six-axis load cell. A biomechanical model was used to calculate a safety factor and to predict the applied pinch force. For experienced dentists, the model was moderately successful in predicting pinch force (R(2)=0.59). For inexperienced dentists, the model failed to predict peak pinch force (R(2)=0.01). The mean safety margin was higher for inexperienced (4.88+/-1.58) than experienced (3.35+/-0.55) dentists, suggesting that students apply excessive force during scaling.

MeSH terms

  • Biomechanical Phenomena*
  • Dental Instruments*
  • Dental Scaling*
  • Humans
  • Periodontium*