Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Can some patients avoid adjuvant chemotherapy for early-stage breast cancer?

Abstract

Adjuvant chemotherapy reduces the risk of relapse and mortality for women with early-stage breast cancer. However, many women diagnosed with early-stage breast cancer experience the toxic effects associated with adjuvant chemotherapy without any meaningful benefit. There are a variety of clinicopathological factors—including hormone receptor expression, histology, and proliferation markers such as Ki-67—that can be used to try to identify patients who can safely avoid adjuvant chemotherapy. In addition, novel molecular tools, including the intrinsic molecular subtypes, prognostic multigene assays, and levels of urokinase-type plasminogen activator, provide further prognostic and predictive information to the standard clinicopathological factors thereby improving the accuracy of risk-of-relapse estimation and of the likelihood of response to cytotoxic chemotherapy.

Key Points

  • Adjuvant chemotherapy reduces the risk of disease recurrence and mortality for women diagnosed with early-stage breast cancer

  • Many women with early-stage breast cancer are overtreated with adjuvant chemotherapy

  • High estrogen receptor immunostaining, absence of HER2 overexpression. and low Ki67, as well as classic lobular histology may identify patients who obtain minimal benefit from adjuvant chemotherapy

  • Prognostic multigene-expression signatures and levels of urokinase-type plasminogen activator may further refine estimates of chemotherapy benefit for indeterminate clinicopathological risk patients

  • Treatment recommendations regarding adjuvant chemotherapy should be individualized to account for patient preferences and the degree of uncertainty regarding estimation of risk and chemotherapy sensitivity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Difference in 5-year DFS rates between ER-positive and ER-negative patients receiving adjuvant chemotherapy in three CALGB trials.17
Figure 2: The chemosensitivity of a breast tumor depends on many factors.

Similar content being viewed by others

References

  1. [No authors listed] Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. An overview of 61 randomized trials among 28,896 women. Early Breast Cancer Trialists' Collaborative Group. N. Engl. J. Med. 319, 1681–1692 (1988).

  2. Ferlay, J., Parkin, D. M. & Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46, 765–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Goldhirsch, A. et al. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann. Oncol. 20, 1319–1329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ravdin, P. M. et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J. Clin. Oncol. 19, 980–991 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Oakman, C., Santarpia, L. & Di Leo, A. Breast cancer assessment tools and optimizing adjuvant therapy. Nat. Rev. Clin. Oncol. 7, 725–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. [No authors listed] Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005).

  10. [No authors listed] Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 352, 930–942 (1998).

  11. Peto, R. The worldwide overview: new results for systemic adjuvant therapies. Early Breast Cancer Trialists' Collaborative Group. Presented at 30th Annual San Antonio Breast Cancer Symposium. Breast Cancer Res. Treat. 106 (Suppl. 1) (2007).

  12. [No authors listed] Tamoxifen for early breast cancer: an overview of the randomised trials. The Early Breast Cancer Trialists' Collaborative Group. Lancet 351, 1451–1467 (1998).

  13. International Breast Cancer Study Group. Endocrine responsiveness and tailoring adjuvant therapy for postmenopausal lymph node-negative breast cancer: a randomized trial. J. Natl. Cancer Inst. 94, 1054–1065 (2002).

  14. Colleoni, M. et al. Duration of adjuvant chemotherapy for breast cancer: a joint analysis of two randomised trials investigating three versus six courses of CMF. Br. J. Cancer 86, 1705–1714 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fisher, B. et al. Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 89, 1673–1682 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Fisher, B. et al. Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet 364, 858–868 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Berry, D. A. et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295, 1658–1667 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Symmans, W. F. et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 25, 4414–4422 (2007).

    Article  PubMed  Google Scholar 

  19. Bonadonna, G. et al. Primary chemotherapy in operable breast cancer: eight-year experience at the Milan Cancer Institute. J. Clin. Oncol. 16, 93–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bear, H. D. et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 24, 2019–2027 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. van der Hage, J. A. et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J. Clin. Oncol. 19, 4224–4237 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fisher, B. et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J. Clin. Oncol. 15, 2483–2493 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Liedtke, C. et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26, 1275–1281 (2008).

    Article  PubMed  Google Scholar 

  24. Ring, A. E. et al. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br. J. Cancer 91, 2012–2017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bear, H. D. et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J. Clin. Oncol. 21, 4165–4174 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Colleoni, M. et al. Expression of, ER, PgR, HER1, HER2, and response: a study of preoperative chemotherapy. Ann. Oncol. 19, 465–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Guarneri, V. et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J. Clin. Oncol. 24, 1037–1044 (2006).

    Article  PubMed  Google Scholar 

  28. Ring, A. E., Smith, I. E., Ashley, S., Fulford, L. G. & Lakhani, S. R. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br. J. Cancer 91, 2012–2017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. von Minckwitz, G. et al. Integrated meta-analysis on 6402 patients with early breast cancer receiving neoadjuvant anthracycline-taxane ± trastuzumab containing chemotherapy [abstract]. Cancer Res. 69 (2 Suppl.), a79 (2009).

    Google Scholar 

  30. Livasy, C. et al. Biomarkers associated with pathologic complete response to neoadjuvant chemotherapy in women with locally advanced breast cancer: results from the I-SPY TRIAL (CALGB 150007/150012 & ACRIN 6657) [abstract]. Cancer Res. 69 (2 Suppl.), a5102 (2009).

    Google Scholar 

  31. Albain, K. S. et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet 374, 2055–2063 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Albain, K., Barlow, O. & O'Malley, F. Concurrent (CAFT) versus sequential (CAF-T) chemohormonal therapy (cyclophosphamide, doxorubicin, 5-fluorouracil, tamoxifen) versus T alone for postmenopausal, node-positive, estrogen (ER) and/or progesterone (PgR) receptor-positive breast cancer; mature outcomes and new biologic correlates on phase II intergroup trial 0100 (SWOG-8814) [abstract 37]. Breast Cancer Res. Treat. 88 (Suppl. 1), S20 (2004).

    Google Scholar 

  33. Arpino, G., Bardou, V. J., Clark, G. M. & Elledge, R. M. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 6, R149–R156 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cristofanilli, M. et al. Invasive lobular carcinoma classic type: response to primary chemotherapy and survival outcomes. J. Clin. Oncol. 23, 41–48 (2005).

    Article  PubMed  Google Scholar 

  35. Tubiana-Hulin, M. et al. Response to neoadjuvant chemotherapy in lobular and ductal breast carcinomas: a retrospective study on 860 patients from one institution. Ann. Oncol. 17, 1228–1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Pestalozzi, B. C. et al. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J. Clin. Oncol. 26, 3006–3014 (2008).

    Article  PubMed  Google Scholar 

  37. Colleoni, M. et al. Increasing steroid hormone receptors expression defines breast cancer subtypes non responsive to preoperative chemotherapy. Breast Cancer Res. Treat. 116, 359–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Purushotham, A., Pinder, S., Cariati, M., Harries, M. & Goldhirsch, A. Neoadjuvant chemotherapy: not the best option in estrogen receptor–positive, HER2-negative, invasive classical lobular carcinoma of the breast? J. Clin. Oncol. 28, 3552–3554 (2010).].

    Article  PubMed  Google Scholar 

  39. Hu, Z. et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7, 96 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen, T. O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Cheang, M. C. et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl Cancer Inst. 101, 736–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol. 7, 683–692 (2010).

    Article  PubMed  Google Scholar 

  44. Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res. 13, 2329–2334 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Darb-Esfahani, S. et al. Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res. 11, R69 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sweep, C. G. et al. External quality assessment of trans-European multicentre antigen determinations (enzyme-linked immunosorbent assay) of urokinase-type plasminogen activator (uPA) and its type 1 inhibitor (PAI-1) in human breast cancer tissue extracts. Br. J. Cancer 78, 1434–1441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Look, M. P. et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl Cancer Inst. 94, 116–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Jänicke, F. et al. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J. Natl Cancer Inst. 93, 913–920 (2001).

    Article  PubMed  Google Scholar 

  49. Harbeck, N. et al. Final 10-year analysis of prospective multicenter Chemo N0 trial for validation of ASCO-recommended biomarkers uPA/PAI-1 for therapy decision making in node-negative breast cancer [abstract]. J. Clin. Oncol. 27 (Suppl.), a511 (2009).

    Article  Google Scholar 

  50. Harbeck, N. et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3,424). Cancer Res. 62, 4617–4622 (2002).

    CAS  PubMed  Google Scholar 

  51. Thomssen, C. et al. ASCO-recommended prognostic factors uPA/PAI-1 in node-negative (N0) breast cancer patients (pts) compared to clinicopathological risk assessment within the NNBC 3-Europe trial [abstract]. J. Clin. Oncol. 27 (Suppl.), a544 (2009).

    Article  Google Scholar 

  52. Thomssen, C. et al. Feasibility of measuring the prognostic factors uPA and PAI-1 in core needle biopsy breast cancer specimens. J. Natl Cancer Inst. 101, 1028–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Inst. 98, 262–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Paik, S. et al. Expression of the 21 genes in the Recurrence Score assay and tamoxifen clinical benefit in the NSABP study B-14 of node negative, estrogen receptor positive breast cancer [abstract]. J. Clin. Oncol. 23 (Suppl.), a510 (2005).

    Article  Google Scholar 

  60. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Sparano, J. A. & Paik, S. Development of the 21-gene assay and its application in clinical practice and clinical trials. J. Clin. Oncol. 26, 721–728 (2008).

    Article  PubMed  Google Scholar 

  62. Gianni, L. et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Esserman, L. J. et al. Breast cancer molecular profiles and tumor response of neoadjuvant doxorubicin and paclitaxel: The I-SPY TRIAL (CALGB 150007/150012, ACRIN 6657) [abstract]. J. Clin. Oncol. 27 (Suppl.), LBA515 (2009).

    Article  Google Scholar 

  66. Pusztai, L. et al. Combined use of genomic prognostic and treatment response predictors in lymph node-negative breast cancer [abstract]. ASCO Breast Cancer Symp. a53 (2007).

  67. Straver, M. et al. The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat. 119, 551–558 (2010).

    Article  PubMed  Google Scholar 

  68. Knauer, M. et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res. Treat. 120, 655–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Cardoso, F. et al. Clinical application of the 70-gene profile: the MINDACT trial. J. Clin. Oncol. 26, 729–735 (2008).

    Article  PubMed  Google Scholar 

  70. Liedtke, C. et al. Genomic grade index is associated with response to chemotherapy in patients with breast cancer. J. Clin. Oncol. 27, 3185–3191 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wirapati, P. et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Bedard, P. L. et al. Limited clinical utility of prognostic gene expression profiles in grade 3 node-negative early stage breast cancer [abstract]. Cancer Res. 69 (Suppl.), a103 (2009).

    Google Scholar 

  74. Mook, S. et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res. Treat. 116, 295–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Saghatchian, M. et al. Combining genomic profiling (70 Gene-Mammaprint) with nodal status allows to classify patients with primary breast cancer and positive lymph nodes (1–9) into very distinct prognostic subgroups that could help tailor treatment strategies [abstract]. Cancer Res. 69 (Suppl. 3), a102 (2009).

    Google Scholar 

  76. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ravdin, P. M. et al. The decrease in breast-cancer incidence in 2003 in the United States. N. Engl. J. Med. 356, 1670–1674 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Lippman, M. E. et al. The relation between estrogen receptors and response rate to cytotoxic chemotherapy in metastatic breast cancer. N. Engl. J. Med. 298, 1223–1228 (1978).

    Article  CAS  PubMed  Google Scholar 

  79. Knauer, M. et al. Identification of a low-risk subgroup in HER-2-positive breast cancer by the 70-gene prognosis signature. Br. J. Cancer 103, 1788–1793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Alexe, G. et al. High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 67, 10669–10676 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Rody, A. et al. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res. 11, R15 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Simes, R. J. & Coates, A. S. Patient preferences for adjuvant chemotherapy of early breast cancer: how much benefit is needed? J. Natl Cancer Inst. Monogr. 2001, 146–152 (2001).

    Article  Google Scholar 

  83. Cocquyt, V. F. et al. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal breast carcinoma. Eur. J. Surg. Oncol. 29, 361–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Chaturvedi, S. et al. Primary Chemotherapy for breast cancer. Does histological type of cancer matter? [abstract 2089]. Breast Cancer Res. Treat. 88 (Suppl. 1), S106 (2004).

    Google Scholar 

  85. Wenzel, C. et al. Invasive ductal carcinoma and invasive lobular carcinoma of breast differ in response following neoadjuvant therapy with epidoxorubicin and docetaxel + G-CSF. Breast Cancer Res. Treat. 104, 109–114 (2007).

    Article  PubMed  Google Scholar 

  86. Straver, M. E. et al. The relevance of breast cancer subtypes in the outcome of neoadjuvant chemotherapy. Ann. Surg. Oncol. 17, 2411–2418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rouzier, R. et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res. 11, 5678–5685 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. de Ronde, J. J. et al. Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res. Treat. 119, 119–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Bhargava, R. et al. Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 116, 1431–1439 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching the data for the article, discussion of the content, writing the Review, and to editing and revising the article.

Corresponding author

Correspondence to Philippe L. Bedard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedard, P., Cardoso, F. Can some patients avoid adjuvant chemotherapy for early-stage breast cancer?. Nat Rev Clin Oncol 8, 272–279 (2011). https://doi.org/10.1038/nrclinonc.2011.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.19

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer