Skip to main content

Advertisement

Log in

Biofilms, a new approach to the microbiology of dental plaque

  • REVIEW ARTICLE
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Dental plaque has the properties of a biofilm, similar to other biofilms found in the body and the environment. Modern molecular biological techniques have identified about 1000 different bacterial species in the dental biofilm, twice as many as can be cultured. Oral biofilms are very heterogeneous in structure. Dense mushroom-like structures originate from the enamel surface, interspersed with bacteria-free channels used as diffusion pathways. The channels are probably filled with an extracellular polysaccharide (EPS) matrix produced by the bacteria. Bacteria in biofilms communicate through signaling molecules, and use this “quorum-sensing” system to optimize their virulence factors and survival. Bacteria in a biofilm have a physiology different from that of planktonic cells. They generally live under nutrient limitation and often in a dormant state. Such “sleepy” bacteria respond differently to antibiotics and antimicrobials, because these agents were generally selected in experiments with metabolically active bacteria. This is one of the explanations as to why antibiotics and antimicrobials are not as successful in the clinic as could be expected from laboratory studies. In addition, it has been found that many therapeutic agents bind to the biofilm EPS matrix before they even reach the bacteria, and are thereby inactivated. Taken together, these fundings highlight why the study of bacteria in the oral cavity is now taken on by studying the biofilms rather than individual species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BN Ullsfoss B Ogaard J Arends J Ruben G Rolla J Afseth (1994) ArticleTitleEffect of a combined chlorhexidine and NaF mouthrinse: an in vivo human caries model study Scand J Dent Res 102 109–12 Occurrence Handle8016555

    PubMed  Google Scholar 

  2. PW Caufield AL Griffen (2000) ArticleTitleDental caries. An infectious and transmissible disease Pediatr Clin North Am 47 1001–19 Occurrence Handle11059347 Occurrence Handle10.1016/S0031-3955(05)70255-8

    Article  PubMed  Google Scholar 

  3. H Ochman LM Davalos (2006) ArticleTitleThe nature and dynamics of bacterial genomes Science 311 1730–3 Occurrence Handle16556833 Occurrence Handle10.1126/science.1119966

    Article  PubMed  Google Scholar 

  4. DM Raskin R Seshadri SU Pukatzki JJ Mekalanos (2006) ArticleTitleBacterial genomics and pathogen evolution Cell 124 703–14 Occurrence Handle16497582 Occurrence Handle10.1016/j.cell.2006.02.002

    Article  PubMed  Google Scholar 

  5. J Downes I Sutcliffe AC Tanner WG Wade (2005) ArticleTitle Prevotella marshii sp. nov. and Prevotella baroniae sp. nov, isolated from the human oral cavity Int J Syst Evol Microbiol 55 1551–5 Occurrence Handle16014480 Occurrence Handle10.1099/ijs.0.63634-0

    Article  PubMed  Google Scholar 

  6. GJ Phillips (2001) ArticleTitleGreen fluorescent protein – a bright idea for the study of bacterial protein localization FEMS Microbiol Lett 204 9–18 Occurrence Handle11682170

    PubMed  Google Scholar 

  7. T Wilson JW Hastings (1998) ArticleTitleBioluminescence Annu Cell Rev Biol 14 197–230 Occurrence Handle10.1146/annurev.cellbio.14.1.197

    Article  Google Scholar 

  8. P Wilmes PL Bond (2006) ArticleTitleMetaproteomics: studying functional gene expression in microbial ecosystems Trends Microbiol 14 92–7 Occurrence Handle16406790 Occurrence Handle10.1016/j.tim.2005.12.006

    Article  PubMed  Google Scholar 

  9. DR Call (2005) ArticleTitleChallenges and opportunities for pathogen detection using DNA micro arrays Crit Rev Microbiol 31 91–9 Occurrence Handle15988839 Occurrence Handle10.1080/10408410590921736

    Article  PubMed  Google Scholar 

  10. J Kok G Buist AL Zomer SA van Hijum OP Kuipers (2005) ArticleTitleComparative and functional genomics of lactococci FEMS Microbiol Rev 29 411–33 Occurrence Handle15936843 Occurrence Handle10.1016/j.femsre.2005.04.004

    Article  PubMed  Google Scholar 

  11. M Wilson H Patel JH Noar (1998) ArticleTitleEffect of chlorhexidine on multi-species biofilms Curr Microbiol 36 13–8 Occurrence Handle9405740 Occurrence Handle10.1007/s002849900272

    Article  PubMed  Google Scholar 

  12. AJ McBain RG Bartolo CE Catrenich D Charbonneau RG Ledder AH Rickard SA Symmons P Gilbert (2003) ArticleTitleMicrobial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms Appl Environ Microbiol 69 177–85 Occurrence Handle12513993 Occurrence Handle10.1128/AEM.69.1.177-185.2003

    Article  PubMed  Google Scholar 

  13. B Guggenheim M Guggenheim R Gmur E Giertsen T Thurnheer (2004) ArticleTitleApplication of the Zurich biofilm model to problems of cariology Caries Res 38 212–22 Occurrence Handle15153691 Occurrence Handle10.1159/000077757

    Article  PubMed  Google Scholar 

  14. RJ Lynch JM ten Cate (2006) ArticleTitleEffect of calcium glycerophosphate on demineralization in an in vitro biofilm model Caries Res 40 142–7 Occurrence Handle16508272 Occurrence Handle10.1159/000091061

    Article  PubMed  Google Scholar 

  15. MA Listgarten (1976) ArticleTitleStructure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study J Periodontol 47 1–18 Occurrence Handle1063849

    PubMed  Google Scholar 

  16. P Stoodley D Debeer Z Lewandowski (1994) ArticleTitleLiquid flow in biofilm systems Appl Environ Microbiol 60 2711–6 Occurrence Handle16349345

    PubMed  Google Scholar 

  17. TM Auschill E Hellwig A Sculean N Hein NB Arweiler (2004) ArticleTitleImpact of the intraoral location on the rate of biofilm growth Clin Oral Investig 8 97–101 Occurrence Handle14986070 Occurrence Handle10.1007/s00784-004-0255-6

    Article  PubMed  Google Scholar 

  18. NB Arweiler E Hellwig A Sculean N Hein TM Auschill (2004) ArticleTitleIndividual vitality pattern of in situ dental biofilms at different locations in the oral cavity Caries Res 38 442–7 Occurrence Handle15316188 Occurrence Handle10.1159/000079625

    Article  PubMed  Google Scholar 

  19. P Chesson (2000) ArticleTitleGeneral theory of competitive coexistence in spatially-varying environments Theor Popul Biol 58 211–37 Occurrence Handle11120650 Occurrence Handle10.1006/tpbi.2000.1486

    Article  PubMed  Google Scholar 

  20. B Nyvad M Kilian (1987) ArticleTitleMicrobiology of the early colonization of human enamel and root surfaces in vivo Scand J Dent Res 95 369–80 Occurrence Handle3477852

    PubMed  Google Scholar 

  21. GL Smith SS Socransky C Sansone (1989) ArticleTitle“Reverse” DNA hybridization method for the rapid identification of subgingival microorganisms Oral Microbiol Immunol 4 141–5 Occurrence Handle2639298

    PubMed  Google Scholar 

  22. J Li EJ Helmerhorst CW Leone RF Troxler T Yaskell AD Haffajee SS Socransky FG Oppenheim (2004) ArticleTitleIdentification of early microbial colonizers in human dental biofilm J Appl Microbiol 97 1311–8 Occurrence Handle15546422 Occurrence Handle10.1111/j.1365-2672.2004.02420.x

    Article  PubMed  Google Scholar 

  23. SK Filoche SA Anderson CH Sissons (2004) ArticleTitleBiofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans Oral Microbiol Immunol 19 322–6 Occurrence Handle15327645 Occurrence Handle10.1111/j.1399-302x.2004.00164.x

    Article  PubMed  Google Scholar 

  24. PE Kolenbrander RN Andersen DS Blehert PG Egland JS Foster RJ Palmer SuffixJr (2002) ArticleTitleCommunication among oral bacteria Microbiol Mol Biol Rev 66 486–505 Occurrence Handle12209001 Occurrence Handle10.1128/MMBR.66.3.486-505.2002

    Article  PubMed  Google Scholar 

  25. SS Socransky AD Haffajee C Smith L Martin JA Haffajee NG Uzel JM Goodson (2004) ArticleTitleUse of checkerboard DNA-DNA hybridization to study complex microbial ecosystems Oral Microbiol Immunol 19 352–62 Occurrence Handle15491460 Occurrence Handle10.1111/j.1399-302x.2004.00168.x

    Article  PubMed  Google Scholar 

  26. JA Field AJ Stams M Kato G Schraa (1995) ArticleTitleEnhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia Antonie Van Leeuwenhoek 67 47–77 Occurrence Handle7741529 Occurrence Handle10.1007/BF00872195

    Article  PubMed  Google Scholar 

  27. S Takenaka M Iwaku E Hoshino (2001) ArticleTitleArtificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis J Infect Chemother 7 87–93 Occurrence Handle11455498 Occurrence Handle10.1007/s101560100014

    Article  PubMed  Google Scholar 

  28. E Zaura-Arite J van Marle JM ten Cate (2001) ArticleTitleConofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm J Dent Res 80 1436–40 Occurrence Handle11437215

    PubMed  Google Scholar 

  29. RJ Palmer SuffixJr R Wu S Gordon CG Bloomquist WF Liljemark M Kilian PE Kolenbrander (2001) ArticleTitleRetrieval of biofilms from the oral cavity Methods Enzymol 337 393–403 Occurrence Handle11398445 Occurrence Handle10.1016/S0076-6879(01)37028-3

    Article  PubMed  Google Scholar 

  30. JS Foster RJ Palmer SuffixJr PE Kolenbrander (2003) ArticleTitleHuman oral cavity as a model for the study of genome-genome interactions Biol Bull 204 200–4 Occurrence Handle12700154

    PubMed  Google Scholar 

  31. JW Costerton Z Lewandowski DE Caldwell DR Korber HM Lappin-Scott (1995) ArticleTitleMicrobial biofilms Annu Rev Microbiol 49 711–45 Occurrence Handle8561477 Occurrence Handle10.1146/annurev.mi.49.100195.003431

    Article  PubMed  Google Scholar 

  32. B Xavier J de C Picioreanu MC van Loosdrecht (2005) ArticleTitleA general description of detachment for multidimensional modelling of biofilms Biotechnol Bioeng 20 IssueID91 651–69 Occurrence Handle10.1002/bit.20544

    Article  Google Scholar 

  33. SK Filoche M Zhu CD Wu (2004) ArticleTitleIn situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions J Dent Res 83 802–6 Occurrence Handle15381723

    PubMed  Google Scholar 

  34. RJ Palmer SuffixJr SM Gordon JO Cisar PE Kolenbrander (2003) ArticleTitleCoaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque J Bacteriol 185 3400–9 Occurrence Handle12754239 Occurrence Handle10.1128/JB.185.11.3400-3409.2003

    Article  PubMed  Google Scholar 

  35. M Guggenheim S Shapiro R Gmur B Guggenheim (2001) ArticleTitleSpatial arrangements and associative behavior of species in an in vitro oral biofilm model Appl Environ Microbiol 67 1343–50 Occurrence Handle11229930 Occurrence Handle10.1128/AEM.67.3.1343-1350.2001

    Article  PubMed  Google Scholar 

  36. T Thurnheer JR van der Ploeg E Giertsen B Guggenheim (2006) ArticleTitleEffects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro Caries Res 40 163–71 Occurrence Handle16508276 Occurrence Handle10.1159/000091065

    Article  PubMed  Google Scholar 

  37. T Thurnheer R Gmur S Shapiro B Guggenheim (2003) ArticleTitleMass transport of macromolecules within an in vitro model of supragingival plaque Appl Environ Microbiol 69 1702–9 Occurrence Handle12620862 Occurrence Handle10.1128/AEM.69.3.1702-1709.2003

    Article  PubMed  Google Scholar 

  38. M Allesen-Holm KB Barken L Yang M Klausen JS Webb S Kjelleberg S Molin M Givskov T Tolker-Nielsen (2006) ArticleTitleA characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms Mol Microbiol 59 1114–28 Occurrence Handle16430688 Occurrence Handle10.1111/j.1365-2958.2005.05008.x

    Article  PubMed  Google Scholar 

  39. CB Whitchurch T Tolker-Nielsen PC Ragas JS Mattick (2002) ArticleTitleExtracellular DNA required for bacterial biofilm formation Science 295 1487 Occurrence Handle11859186 Occurrence Handle10.1126/science.295.5559.1487

    Article  PubMed  Google Scholar 

  40. JU Kreft (2004) ArticleTitleBiofilms promote altruism Microbiology 150 2751–60 Occurrence Handle15289571 Occurrence Handle10.1099/mic.0.26829-0

    Article  PubMed  Google Scholar 

  41. MC Van Loosdrecht JJ Heijnen H Eberl J Kreft C Picioreanu (2002) ArticleTitleMathematical modelling of biofilm structures Antonie Van Leeuwenhoek 81 245–56 Occurrence Handle12448723 Occurrence Handle10.1023/A:1020527020464

    Article  PubMed  Google Scholar 

  42. WE Sanders CC Sanders (1984) Modification of normal flora by antibiotics: effects on individuals and the environment RK Koot MA Sande (Eds) New dimensions in antimicrobial chemotherapy Churchill Livingstone New York 217–41

    Google Scholar 

  43. PD Marsh (1994) ArticleTitleMicrobial ecology of dental plaque and its significance in health and disease Adv Dent Res 8 263–71 Occurrence Handle7865085

    PubMed  Google Scholar 

  44. WJ Loesche (1979) ArticleTitleClinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesis J Dent Res 58 2404–12 Occurrence Handle41862

    PubMed  Google Scholar 

  45. E Theilade (1986) ArticleTitleThe non-specific theory in microbial etiology of inflammatory periodontal diseases J Clin Periodontol 13 905–11 Occurrence Handle3540019 Occurrence Handle10.1111/j.1600-051X.1986.tb01425.x

    Article  PubMed  Google Scholar 

  46. PD Marsh (2003) ArticleTitleAre dental diseases examples of ecological catastrophes? Microbiology 149 279–94 Occurrence Handle12624191 Occurrence Handle10.1099/mic.0.26082-0

    Article  PubMed  Google Scholar 

  47. D Beighton (2005) ArticleTitleThe complex oral microflora of high-risk individuals and groups and its role in the caries process Community Dent Oral Epidemiol 33 248–55 Occurrence Handle16008631 Occurrence Handle10.1111/j.1600-0528.2005.00232.x

    Article  PubMed  Google Scholar 

  48. SG Rudiger A Carlen JH Meurman K Kari J Olsson (2002) ArticleTitleDental biofilms at healthy and inflamed gingival margins J Clin Periodontol 29 524–30 Occurrence Handle12296780 Occurrence Handle10.1034/j.1600-051X.2002.290609.x

    Article  PubMed  Google Scholar 

  49. AL Spoering MS Gilmore (2006) ArticleTitleQuorum sensing and DNA release in bacterial biofilms Curr Opin Microbiol 9 133–7 Occurrence Handle16529982 Occurrence Handle10.1016/j.mib.2006.02.004

    Article  PubMed  Google Scholar 

  50. LS Havarstein P Gaustad IF Nes DA Morrison (1996) ArticleTitleIdentification of the streptococcal competence-pheromone receptor Mol Microbiol 21 863–9 Occurrence Handle8878047 Occurrence Handle10.1046/j.1365-2958.1996.521416.x

    Article  PubMed  Google Scholar 

  51. DG Cvitkovitch (2001) ArticleTitleGenetic competence and transformation in oral streptococci Crit Rev Oral Biol Med 12 217–43 Occurrence Handle11497374 Occurrence Handle10.1177/10454411010120030201

    Article  PubMed  Google Scholar 

  52. FC Petersen L Tao AA Scheie (2005) ArticleTitleDNA binding-uptake system: a link between cell-to-cell communication and biofilm formation J Bacteriol 187 4392–400 Occurrence Handle15968048 Occurrence Handle10.1128/JB.187.13.4392-4400.2005

    Article  PubMed  Google Scholar 

  53. CM Thomas KM Nielsen (2005) ArticleTitleMechanisms of, and barriers to, horizontal gene transfer between bacteria Nat Rev Microbiol 3 711–21 Occurrence Handle16138099 Occurrence Handle10.1038/nrmicro1234

    Article  PubMed  Google Scholar 

  54. YH Li N Tang MB Aspiras PC Lau JH Lee RP Ellen DG Cvitkovitch (2002) ArticleTitleA quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation J Bacteriol 184 2699–708 Occurrence Handle11976299 Occurrence Handle10.1128/JB.184.10.2699-2708.2002

    Article  PubMed  Google Scholar 

  55. M Whiteley KM Lee EP Greenberg (1999) ArticleTitleIdentification of genes controlled by quorum sensing in Pseudomonas aeruginosa Proc Natl Acad Sci U S A 96 13904–9 Occurrence Handle10570171 Occurrence Handle10.1073/pnas.96.24.13904

    Article  PubMed  Google Scholar 

  56. F Sepandj H Ceri AP Gibb RR Read M Olson (2003) ArticleTitleBiofilm infections in peritoneal dialysis-related peritonitis: comparison of standard MIC and MBEC in evaluation of antibiotic sensitivity of coagulase-negative staphylococci Perit Dial Int 23 77–9 Occurrence Handle12691511

    PubMed  Google Scholar 

  57. JD Chambless SM Hunt PS Stewart (2006) ArticleTitleA three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials Appl Environ Microbiol 72 2005–13 Occurrence Handle16517649 Occurrence Handle10.1128/AEM.72.3.2005-2013.2006

    Article  PubMed  Google Scholar 

  58. PS Stewart JW Costerton (2001) ArticleTitleAntibiotic resistance of bacteria in biofilms Lancet 358 135–8 Occurrence Handle11463434 Occurrence Handle10.1016/S0140-6736(01)05321-1

    Article  PubMed  Google Scholar 

  59. B Szomolay I Klapper J Dockery PS Stewart (2005) ArticleTitleAdaptive responses to antimicrobial agents in biofilms Environ Microbiol 7 1186–91 Occurrence Handle16011755 Occurrence Handle10.1111/j.1462-2920.2005.00797.x

    Article  PubMed  Google Scholar 

  60. JM Ten Cate PD Marsh (1994) ArticleTitleProcedures for establishing efficacy of antimicrobial agents for chemotherapeutic caries prevention J Dent Res 73 695–703 Occurrence Handle8163740

    PubMed  Google Scholar 

  61. E Beaudouin G Kanny M Morisset JM Renaudin M Mertes MC Laxenaire C Mouton F Jacson DA Moneret-Vautrin (2004) ArticleTitleImmediate hypersensitivity to chlorhexidine: literature review Allerg Immunol (Paris) 36 123–6 Occurrence Handle10.1159/000076653

    Article  Google Scholar 

  62. S Twetman (2004) ArticleTitleAntimicrobials in future caries control? A review with special reference to chlorhexidine treatment Caries Res 38 223–9 Occurrence Handle15153692 Occurrence Handle10.1159/000077758

    Article  PubMed  Google Scholar 

  63. D Kara SB Luppens JM Cate (2006) ArticleTitleDifferences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine Eur J Oral Sci 114 58–63 Occurrence Handle16460342 Occurrence Handle10.1111/j.1600-0722.2006.00262.x

    Article  PubMed  Google Scholar 

  64. JH Weisburger (1999) ArticleTitleTea and health: the underlying mechanisms Proc Soc Exp Biol Med 220 271–5 Occurrence Handle10202402 Occurrence Handle10.1046/j.1525-1373.1999.d01-46.x

    Article  PubMed  Google Scholar 

  65. S Gupta B Saha AK Giri (2002) ArticleTitleComparative antimutagenic and anticlastogenic effects of green tea and black tea: a review Mutat Res 512 37–65 Occurrence Handle12220589 Occurrence Handle10.1016/S1383-5742(02)00024-8

    Article  PubMed  Google Scholar 

  66. S Castaldo F Capasso (2002) ArticleTitlePropolis, an old remedy used in modern medicine Fitoterapia 73 IssueIDSuppl 1 S1–6 Occurrence Handle12495704 Occurrence Handle10.1016/S0367-326X(02)00185-5

    Article  PubMed  Google Scholar 

  67. H Koo SK Pearson K Scott-Anne J Abranches JA Cury PL Rosalen YK Park RE Marquis WH Bowen (2002) ArticleTitleEffects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats Oral Microbiol Immunol 17 337–43 Occurrence Handle12485324 Occurrence Handle10.1034/j.1399-302X.2002.170602.x

    Article  PubMed  Google Scholar 

  68. S Wood D Metcalf D Devine C Robinson (2006) ArticleTitleErythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms J Antimicrob Chemother 57 680–4 Occurrence Handle16464894 Occurrence Handle10.1093/jac/dkl021

    Article  PubMed  Google Scholar 

  69. J Kreth J Merritt W Shi F Qi (2005) ArticleTitleCompetition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm J Bacteriol 187 7193–203 Occurrence Handle16237003 Occurrence Handle10.1128/JB.187.21.7193-7203.2005

    Article  PubMed  Google Scholar 

  70. JD Hillman A Chen M Duncan SW Lee (1994) ArticleTitleEvidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans Infect Immun 62 60–4 Occurrence Handle8262650

    PubMed  Google Scholar 

  71. JR Tagg KP Dierksen (2003) ArticleTitleBacterial replacement therapy: adapting “germ warfare” to infection prevention Trends Biotechnol 21 217–23 Occurrence Handle12727383 Occurrence Handle10.1016/S0167-7799(03)00085-4

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob M. ten Cate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ten Cate, J. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94, 1–9 (2006). https://doi.org/10.1007/s10266-006-0063-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-006-0063-3

Key words

Navigation